6 Ways to Develop Early Math Skills
Provided by Sylvan Learning Center 
http://encarta.msn.com/encnet/departments/elementary/default.aspx?article=earlymathskills 
No
one questions that the development of early math skills is important.
Proficiency in the basic arithmetic of whole numbers and fractions is expected
throughout a child's academic career and early experiences can make all the
difference. But how do you engage your child's natural curiosity and apply it
to the study of math?
Standard
drills using pencil and paper do have their place, providing repetition that is
necessary to master a skill, but they are not likely to spark your child's
interest. Much more effective in this regard are handson activities that
require mathematical thinking. Listed below are six ways that you can help your
child develop early math skills.
Base
Ten Blocks.
Base Ten Blocks can be purchased or made at home with wood or Styrofoam. A set
consists of single cubes for counting by ones, sticks of 10 cubes for counting
by tens, flats of 100 cubes for counting by hundreds and large blocks of 1,000
cubes for counting by thousands.
Change.
First make sure that your child understands the value of each of the
coinspennies, nickels, dimes and quarters. After giving your child an
adequate number of each type of coin, give her an amount that she must come up
with using the coins she has been given. For example, if you give a value of 40
cents, she could use four dimes as a solution to the problem. As her skill
increases, add new challenges. For example, how many different ways can you
make 40 cents? Can you come up with 38 cents using only nickels, dimes and
quarters? Why or why not?
Rearrangements.
For this exercise. you need three identical objects that can be labeled A, B
and C. Start by having your child order the objects from left to right, i.e.,
ABC. Then let him see how many different ways he can rearrange the objects. For
example, swapping the first and last object gives the new configuration CBA.
Give your child some crayons and paper to record the different configurations.
After she has found them allthere are sixsee if you and your child can
develop an orderly way to come up with the different configurations. For an
extra challenge, try four objects labeled A, B, C and D (there are 24 different
configurations).
Quotient
and Remainder.
You need a handful of M&M's (or Cheerios for a healthier version). Give
your child a number of M&M's, and have her divide them into groups of a
smaller number. For example, if you give her 26 M&M's and ask her to divide
them into even groups of three, she should have eight groups of three with two
M&M's left over. The number of groups (eight) is called the quotient and
the number of remaining M&M's that cannot be put into a group is called the
remainder (two). You can provide a little incentive by letting your child eat
the remainders if she solves the problem within a certain time limit.
Even
and Odd.
Ask your child to divide a number of M&M's into groups of two. Now there
are only two possible values for the remainder. Either there are none left over
and the remainder is zero, or there is one left over and the remainder is one.
(Why can't two be left over?) When we divide a number by two and get a
remainder of zero we say the number is even. When we get a remainder of one, we
say it is odd.
Pizzas.
Buy about three pizzas (anything that can be divided into equal parts will
work, but pizzas are just more fun) and make sure your child invites some
friendsshe'll need help eating all that pizza! Have your child cut the first
pizza into two equal parts, the second into three equal parts, and the third
into four equal parts. Then explain that even though each of them has been
divided into a different number of pieces, each is still one whole pizza. For
example, if you take a pizza and cut it into two pieces, two out of two pieces
is one pizza, or 2/2 = 1. Similarly, 3/3 = 1, 4/4 = 1 and so on. This
demonstrates the important property that whenever the numerator and denominator
of a fraction are the same, the fraction is equal to one. Be sure your child
understands this idea because it will help in further studies of fractions.
Worksheet
Addition
1.
365 + 264 =
2.
229 + 94 =
3.
342 + 32 =
Multiplication
4.
32 X 3 =
5.
49 X 2 =
6.
15 X 2 =
Division
Suppose
you are given 25 M&M's and told to divide them into groups of 3.
7.
What is the quotient?
8.
What is the remainder?
Answers
1.
629
2.
323
3.
374
4.
96
5.
98
6.
30
7.
8
8.
1
